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Green’s function analysis of electromagnetic waves in two-layered periodic structures
with fluctuations in thickness

Gregory V. Morozov, Roman Gr. Maev, and G. W. F. Drake
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
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A general method for the construction of the Green’s function for finite one-dimensional inhomogeneous
layers is developed. Using the results of this method the exact analytical Green’s function for periodic dielec-
tric structures is found. As an example of its application, the influence of fluctuations of the widths of the basic
layers on the reflection and transmission of electromagnetic waves propagating through the structure is inves-
tigated. The results are applied to the design of optical switching systems with periodic dielectric structures as
the operating medium. The same Green’s function can be used to solve a wide variety of other problems.
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I. INTRODUCTION

In a previous article@1# we considered in detail the nor
mal propagation of plane electromagnetic waves thro
two-layered periodic dielectric structures. We found th
even relatively small variations in the parameters of
structure could cause large changes in the reflection
transmission. As an example, we demonstrated the influe
of a constant elastic stress created inside the structure o
reflection coefficient. We showed that in some regions of
structure parameters, particularly near the boundaries
tween so-called forbidden and allowed regions of wave
quencies, a reasonably small stress is capable of shiftin
electromagnetic wave with wavelengthl from a forbidden
region, where reflection is close to 100%, to the edge of
allowed region, where reflection is not more than 15%
20%. Such shifts are caused primarily by homogene
changes, i.e., changes that keep the periodicity of the st
ture, with the width of the basic layers changing fromd1 ,d2

to d11dd1 ,d21dd2, with dd1 anddd2 being around 1.5%
for materials like polystyrene. The aforementioned shifti
opens the possibility of using a two-layered periodic diel
tric structure as the operating medium for optical devices
modulators and switches. However, there may be prac
difficulties in achieving this purpose due to random fluctu
tions in any real structure. For us the most important issu
this ‘‘nonideality’’ is random fluctuations in thickness of th
layers due to inhomogeneous growing conditions. As a
sult, the real reflection and transmission coefficients co
have features that differ considerably from those for id
structures. Despite intense theoretical and experimenta
vestigation of layered periodic structures in recent ye
@2–8#, including nonlinear cases@9,10#, the influence of pos-
sible defects on the properties of reflection and transmis
coefficients of these structures are much less well known;
Refs@11,12#, which are mainly devoted to the description
new pseudogaps of localized states created by positional
order. Therefore, a theory that is able to take into account
effect of such defects~fluctuations in layer thickness in ou
case! on the reflection and transmission is needed.

The most general and perhaps the most elegant appr
to such problems is to find the Green’s function for the u
1063-651X/2001/63~5!/056601~8!/$20.00 63 0566
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perturbed profile of the refractive index, which in our case
an ideal two-layered periodic structure. Then, using
Green’s function, it is possible to reduce the perturbed pr
lem to the integral Lippmann-Schwinger equation and to fi
its solution, at least in the first and second approximations
terms of the Neumann~Born! series.

In the present paper, we develop a general method for
construction of an analytical Green’s function for the wav
propagating normal to the surface of a finite one-dimensio
structure with an arbitrary profile of refractive index, su
rounded by a homogeneous medium with refractive ind
n0. Using the Green’s function obtained, we transform t
differential wave equation to the integral Lippman
Schwinger equation, taking into account outgoing scatter
wave boundary conditions. As an application of the theo
developed, we consider the propagation of waves in tw
layered periodic dielectric structures with fluctuations in t
layer thickness. In particular, we obtain the exact analyti
Green’s function for the ideal structure~no fluctuations!.
Then, following the standard procedure of solving t
Lippmann-Schwinger equation in terms of Neumann ser
we obtain the first-order correction to the reflection coe
cient for the ideal structure. After that, we define the limits
our fluctuations under which the Neumann series rema
convergent and identify the regions of structure parame
where the reflection coefficient is not critically sensitive
the fluctuations, i.e. keeps the essential features of the i
structure. Finally, combining the results of the analysis c
cerning the tolerance in fluctuations with our previous resu
concerning shifts of the electromagnetic wave from forb
den to allowed regions under elastic stress action@1#, we
suggest theoretical guidelines for the construction of opt
switching systems with a two-layered periodic dielect
structure as an operating principle.

The paper is organized as follows. In Sec. II we develo
general method for the construction of an exact analyt
form of the Green’s function for one-dimensional syste
with symmetrical refractive indexes at large distances a
show how to make practical use of this function for the c
culation of the reflection coefficients. In Sec. III we apply t
results to the calculation of the reflection coefficient of
two-layered periodic structure with fluctuations in the lay
thicknesses. In Sec. IV we identify the structure paramet
©2001 The American Physical Society01-1
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including the limits of fluctuations in them that are tolerab
for optical switching systems. Finally, the conclusions a
summarized in Sec. V.

II. GENERAL THEORY

Let us consider a transparent~without absorption! dielec-
tric structure of lengthL with a position-dependent refractiv
indexnL(z), and with a constant index of refractionn0 of the
medium on either side of the structure. Mathematically,
refractive indexnh(z) of such a profile can be represented
the form

nh~z!5H n0 , z,0,z.L

nL~z!, 0,z,L.
~1!

Let electromagnetic waves propagate along thez direction,
corresponding to normal propagation. In this case, light
larization does not play a role and the calculations giv
below are valid for both possible wave polarizations~along
they or x axis!. For monochromatic waves, i.e., for harmon
time dependence, we can setE(z,t)5E(z)exp(2ivt), and
reduce the Maxwell equations to the one-dimensional ho
geneous Helmholtz equation

d2E~z!

dz2
1k2nh~z!2E~z!50, ~2!
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wherek is the wave number in vacuum.
The Green’s functionG(z,z1) for Eq. ~2! satisfies the

equation

d2G~z,z1!

dz2
1k2nh~z!2G~z,z1!5d~z2z1! ~3!

and the radiation condition

G~6`,z1!;exp~6 ikn0z! ~4!

for the waves that fall on the structure from the regionz
,0. The general method of obtaining the solution for t
Green’s functionG(z,z1) involves its spectral decompos
tion in terms of the normalized solutions of the homogene
equation~2! ~see, for example, Ref.@13#!. But the calcula-
tions in an exact analytical form appear lengthy and cumb
some even for simple cases where the profilenL(z) is either
a step@14# or quadratic function@15#.

The first basic idea of the proposed method for the c
struction of an analytical Green’s function associated w
Eq. ~2! is to use the symmetry propertyG(z,z1)5G(z1 ,z).
We divide the whole plane (z,z1) into 12 parts, symmetrica
in pairs with respect to the linez5z1, and introduce the
following notation forG(z,z1) in each of these parts:
~5!
1-2
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The symmetry properties of the Green’s function requir
knowledge of the solution only in the upper half plane (z,z1)
wherez1.z. We can obtain the solution in the lower ha
plane using the symmetry equalitiesG1(z,z1)5G12(z1 ,z),
G2(z,z1)5G8(z1 ,z), G3(z,z1)5G4(z1 ,z), G5(z,z1)
5G11(z1 ,z), G6(z,z1)5G7(z1 ,z), and G9(z,z1)
5G10(z1 ,z).

Now let us derive the exact expressions for the Gree
function in the upper half plane. First, we note that sin
n(z) varies only along thez axis the Green’s function
G(z,z1) can be factorized into independent functions oz
andz1. Then, using the boundary conditions on the inter
boundaries of the upper half plane and the boundary co
tions along the linez5z1, we can show that the exact an
lytical expressions for the functionG(z,z1) in the upper half
plane can be cast in the form

G1~z,z1!5
1

2ikn0
Bl exp@ ikn0~z12L !#exp~2 ikn0z!,

G2~z,z1!5
1

2ikn0
@ClEh1

L ~z1!1DlEh2

L ~z1!#exp~2 ikn0z!,

G3~z,z1!5
1

2ikn0
@exp~ ikn0z1!1Al exp~2 ikn0z1!#

3exp~2 ikn0z!, ~6!

G5~z,z1!5
1

2ikn0
exp@ ikn0~z12L !#@CrEh1

L ~z!1DrEh2

L ~z!#,

G6~z,z1!5
1

2ikn0Br
@ClEh1

L ~z1!1DlEh2

L ~z1!#

3@CrEh1

L ~z!1DrEh2

L ~z!#,

G9~z,z1!5
1

2ikn0
exp@ ikn0~z12L !#$exp@2 ikn0~z2L !#

1Ar exp@ ikn0~z2L !#%.

In the above expressionsEh1

L andEh2

L are the linearly inde-

pendent solutions to the homogeneous equation~2! in the
region 0,z,L, which must be known in order to mak
practical use of the Green’s function. All constants are
rectly related to the scattering solutionsEl(z) and Er(z) of
the homogeneous equation~2! for a plane wave falling on
the structure from the regionsz,0 andz.L, respectively
~see Ref.@16#!,
05660
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El~z!5H exp~ ikn0z!1Al exp~2 ikn0z!, z,0

ClEh1

L ~z!1DlEh2

L ~z!, 0,z,L

Bl exp@ ikn0~z2L !#, z.L

~7!

and

Er~z!

5H Br exp~2 ikn0z!, z,0

CrEh1

L ~z!1DrEh2

L ~z!, 0,z,L

exp@2 ikn0~z2L !#1Ar exp@ ikn0~z2L !#, z.L.

~8!

They can be found from the continuity conditions if the fu
damental solutionsEh1

L and Eh2

L are known. The boundary

conditions require thatAr* 5Al andBl5Br for any Eh1

L and

Eh2

L @17#.

Suppose we have found the fundamental solutionsEh1

L

and Eh2

L by some means, either analytically or numerical

Now let us consider the same dielectric structure but with
embedded defect of refractive indexns(z) and with finite
width s5z92z8 between 0,z,L. The one-dimensiona
Helmholtz equation~2! for such a refractive index profile
n(z) can be represented in the form of the inhomogene
equation

d2E~z!

dz2
1k2nh

2~z!E~z!

5H 0, z,z8,z.z9

2k2@ns
22nh

2~z!#E~z!, z8,z,z9
~9!

with the corresponding homogeneous equation and its s
tion Eh(z) describing wave propagation through the structu
without the defect~1!. One can see that for the wav
exp(ikn0z) incoming from the regionz,0 Eh(z)5El(z) with
El(z) from Eq.~7!. The solutionE(z) of the inhomogeneous
equation~9! itself also has the form of expression~7! but
with a different fundamental system of solutionsE1

L(z),
E2

L(z) inside the structure and with different constan
which we denote byA, B, C, andD.

Introducing the parameterm(z)52k2@ns
2(z)2nh

2(z)#, let
us change the inhomogeneous differential equation~9! to the
equivalent integral Lippmann-Schwinger equation@13#,
which in the regionz,0 has the form

exp~ ikn0z!1A exp~2 ikn0z!

5exp~ ikn0z!1Al exp~2 ikn0z!

1E
z8

z9
G~z,z1!m~z1!EL~z1!dz1 . ~10!
1-3
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This integral equation cannot be used directly to find
reflection coefficientA because under the integral we ha
the unknown functionEL(z1)5CE1

L(z1)1DE2
L(z1), which

is a solution of Eq.~9! in the region 0,z,L. However, it is
possible to develop an approximation scheme known as
Neumann series. The core idea of the scheme for our p
lem is to use the homogeneous solutionEh

L(z1)5ClEh1

L (z1)

1DlEh2

L (z1) as an initial approximation for the inhomoge

neous solutionE(L)(z1) under the integral, and then iterate
find higher order corrections. As a result, we can express
reflection coefficientA in terms of the Neumann series

A5Al1A(1)1A(2)1•••1A( j )1•••, ~11!

where the first term of the seriesAl is simply the amplitude
reflection coefficient for the structure~1! ~no defects!, the
second term

A(1)5E
z8

z9
G~0,z1!m~z1!@ClEh1

L ~z1!1DlEh2

L ~z1!#dz1

~12!

is the first-order correction to the reflection coefficient, a
an arbitrary term is given by

A( j )5E
z8

z9
•••E

z8

z9
G~0,zj !m~zj !•••G~z2 ,z1!m~z1!

3@ClEh1

L ~z1!1DlEh2

L ~z1!#dz1dz2•••dzj . ~13!

III. APPLICATION TO TWO-LAYERED PERIODIC
STRUCTURES

In this section we apply the general solution to a fin
two-layered periodic dielectric structure with random flu
tuations in the width of the layers due, for example, to inh
mogeneous growing conditions. Let the number of perio
beN and the thicknesses of the ideal layers bed1 ,d2, i.e., for
the ideal structureL5Nd, whered5d11d2 is the period of
the structure, and the refractive index is

nL~z!5H n1 , ~m21!d,z,md1

n2 , md1,z,md,
~14!

FIG. 1. Two-layered periodic dielectric structure with fluctu
tions in layer thicknesses: dashed line, ideal structure~no fluctua-
tions in layer thicknesses!; solid line, real structure~fluctuations in
layer thicknesses with Gaussian distribution!.
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where m51,2, . . . ,N is the number of the current perio
~see Fig. 1!.

In order to describe the random fluctuations, we will us
normal distribution model with mean 0 and standard dev
tion dr 1 for the fluctuations in the width of the layers wit
n(z)5n1, and standard deviationdr 2 for the fluctuations in
the width of the layers withn(z)5n2. As a result, the actua
widths of the layers with the refractive indexesn1 andn2 of
an arbitrary periodm are d11dd1m and d21dd2m , where
dd1m anddd2m are either positive or negative random num
bers from the above normal distributions, as shown in Fig
Therefore, it is convenient to introduce two groups of e
bedded defects inside the structure. The first group cons
of N defects with thickness, boundary points, and refract
index of the defect in themth period determined by the for
mulas

sm
(1)5(

j 51

m

dd1 j1 (
j 51

m21

dd2 j ,

z85zm
(1)[~m21!d1d1 , ~15!

z95zm
(1)1sm

(1) ,

ns~z!5H n1 if sm
(1).0

n2 if sm
(1),0.

As a result, the perturbation potentialm(z) of the defect of
this group in themth period takes the form

mm
(1)5H 2k2~n1

22n2
2! if sm

(1).0

2k2~n2
22n1

2! if sm
(1),0.

~16!

The second group consists ofN21 defects with thickness
boundary points, and refraction index of the defect on
boundary between themth andm11th periods determining
by the formulas

sm
(2)5(

j 51

m

dd1 j1(
j 51

m

dd2 j ,

z85zm
(2)[md, ~17!

z95zm
(2)1sm

(2) ,

ns~z!5H n2 if sm
(2).0

n1 if sm
(2),0.

As a result, the perturbation potentialm(z) for each defect of
this group takes the form

mm
(2)5H 2k2~n2

22n1
2! if sm

(2).0

2k2~n1
22n2

2! if sm
(2),0.

~18!

Now let us find the amplitude reflection coefficientA of
this structure for the case of a plane wave exp(ikn0z) incom-
1-4
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ing from the regionz,0. For the ideal periodic profile the
homogeneous equation~2! in the interval 0,z,L is the Hill
equation, and, according to the Floquet theorem, the s
tions Eh1

L (z) andEh2

L (z) can be represented as@18#

Eh1

L ~z!5F1~z!exp~ i jz!, Eh2

L ~z!5F2~z!exp~2 i jz!,

~19!

whereF1(z) andF2(z) are periodic functions ofz with the
periodd, andj is a characteristic Lyapunov constant. In t
specific case of the two-layered periodicity,Eh1

L (z) and

Eh2

L (z) can be written in the layers withn(z)5n1 as @1,19#

Eh1

n1~z!5sin$kn1@z2~m21!d#2 1
2 kn1d11w%ei j(m21),

~20!

Eh2

n1~z!5sin$kn1@z2~m21!d#2 1
2 kn1d12w%e2 i j(m21),
s

t-

05660
u-

and in the layers withn(z)5n2 as

Eh1

n2~z!5 1
2 S 11

n1

n2
D sin@kn2~z2md!2 1

2 kn1d11w#ei jm

2 1
2 S 12

n1

n2
D sin@kn2~z2md!1 1

2 kn1d12w#ei jm,

~21!

Eh2

n2~z!5 1
2 S 11

n1

n2
D sin@kn2~z2md!2 1

2 kn1d12w#e2 i jm

2 1
2 S 12

n1

n2
D sin@kn2~z2md!1 1

2 kn1d11w#e2 i jm.

The complex phasef and so-called multiplicatorr
ªexp(ij) can be expressed as
w5 1
2 arccosFa21 sinV1a sinD

2 sin~kn2d2! G , ~22!

r5
cos~V!2a2 cos~D!2sgn@a sin~kn2d2!#A@cosV2a2 cosD#22~12a2!2

12a2
, ~23!

where

a5
n22n1

n21n1
, V5k~n2d21n1d1!, D5k~n2d22n1d1!. ~24!

Using the boundary conditions at the pointsz50 andz5Nd, we can define either analytically or numerically all constantsAl ,
Bl , Cl , Dl , Ar , Br , Cr , andDr of the scattering solutions~7! and~8!. For example, the constantAl , which is the amplitude
reflection coefficient of the ideal structure for the wave exp(ikn0z) incoming from the regionz,0, has the analytical form

Al5
@~n1

22n0
2!cos~2f!1~n1

21n0
2!cos~kn1d1!1 i2n1n0 sin~kn1d1!#sin~jN!

2n1n0 sin~2f!cos~jN!2@~n1
22n0

2!cos~kn1d1!1~n1
21n0

2!cos~2f!#sin~jN!
. ~25!
As a result, a knowledge of all these constants allows u
find the Green’s functionG(z,z1) for the finite ideal two-
layered periodic structure in all 12 parts~5! of the plane
(z,z1).

Finally, the net contribution of the fluctuations to the firs
order correction term~12! for the reflection coefficient can
be written as

A(1)5 (
m51

N

mm
(1)E

zm
(1)

zm
(1)

1sm
(1)

dz1

3H G6
n2~0,z1!Eh

n2~z1! if sm
(1).0

G6
n1~0,z1!Eh

n1~z1! if sm
(1),0
to
1 (

m51

N21

mm
(2)E

zm
(2)

zm
(2)

1sm
(2)

dz1

3H G6
n1~0,z1!Eh

n1~z1! if sm
(2).0

G6
n2~0,z1!Eh

n2~z1! if sm
(2),0,

~26!

where

G6
n1,2~0,z1!5

1

2ikn0
@ClEh1

n1,2~z1!1DlEh2

n1,2~z1!# ~27!

and

Eh
n1,2~z1!5ClEh1

n1,2~z1!1DlEh2

n1,2~z1!. ~28!

Using Eqs.~27! and ~28!, we can expressA(1) in the more
explicit form
1-5
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A(1)5 (
m51

N mm
(1)

2ikn0
E

zm
(1)

zm
(1)

1sm
(1)

dz13H @ClEh1

n2~z1!1DlEh2

n2~z1!#2 if sm
(1).0

@ClEh1

n1~z1!1DlEh2

n1~z1!#2 if sm
(1),0

1 (
m51

N21 mm
(2)

2ikn0
E

zm
(2)

zm
(2)

1sm
(2)

dz13H @ClEh1

n1~z1!1DlEh2

n1~z1!#2 if sm
(2).0

@ClEh1

n2~z1!1DlEh2

n2~z1!#2 if sm
(2),0.

~29!
be
e

th
r
ta
p
-
ru
w

a
s
ng

T
nd

ac

at
he

io
e
th
a

h

iz

t
e
n

e
b

re
ut
x

us
m

to
the
p-

ent
50.
ium
p

ed
ion
ond

ing
in-
ther

ure.

ass.
the

an

on
k-
the

la

eal
ion
of

rd-
All four kinds of integral in the above expression can
evaluated analytically without any difficulties, since th
functions under the integral are simply superposition of
sinusoidal functions~20! and~21!. However, the final answe
is very cumbersome and we do not present it here in de
Instead, in the next section, we consider the numerical ap
cation of Eq.~29! to two-layered periodic dielectric struc
tures with the specific parameters suitable for the const
tion of optical switching systems. It should be noted that
can obtain any other correction termA( j ) by applying for-
mula ~13!.

IV. RESULTS AND DISCUSSION

As mentioned in the Introduction, the main idea for
proposed optical switch is to vary the material parameter
the two-layered periodic dielectric medium so as to cha
significantly ~up to 80%! the reflection coefficient for inci-
dent electromagnetic waves with a specific wavelengthl by
the application of an elastic stress of reasonable size.
proposal differs from existing acousto-optic filters a
switches in that it is the thicknesses of the basic layersd1
and d2 that are changed, rather than their indices of refr
tion n1 andn2.

Several requirements must be met in the choice of m
rials for the practical realization of such a switch. First, t
reflection coefficient~as a function ofl) must have a well
defined structure of forbidden regions, where the reflect
coefficient almost reaches unity, and allowed regions, wh
the reflection coefficient drops to nearly zero. Second,
medium should be constructed from alternating layers of m
terials with low Young’s modulus in one layer and hig
compressive yield strength in both in order to produce
differential change in the thicknessesd1 andd2 of the basic
layers. Third, the parameters should be chosen to minim
the influence of unavoidable random fluctuationsdd1m and
ddm2 on the performance characteristics of the switch due
imperfect growing conditions. The Green’s function obtain
here is particularly useful in studying the influence of ra
dom fluctuations in order to satisfy this last requirement.

There are two ways to satisfy the first requirement. A w
defined structure of allowed and forbidden regions can
obtained either by using a rather large numberN of layers
consisting of alternating materials with close indices of
fraction @1,19#, or by using a small number of layers, b
with materials having large differences in refractive inde
The second option is preferable because it simultaneo
helps to satisfy the third requirement—the smaller the nu
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ber of layers, the smaller the number of terms in the sum~29!
over random fluctuations in the calculation of corrections
the reflection coefficient. As for the second requirement,
most suitable material is a range of polymers with high o
tical transparency. Note that almost all optically transpar
polymers have refractive indices in the range 1.33 to 1.
Consequently, we cannot construct the operating med
from alternating layers of two polymers if we want to kee
the number of layers small and still have a well defin
structure of allowed and forbidden regions for the reflect
coefficient. We are therefore forced to choose the sec
material to be a glass with high refractive indexn.2. Such
two-layered periodic structures consisting of alternat
polymer/glass layers with a large difference in refractive
dices have recently attracted considerable interest for o
possible applications@20#.

Let us consider a concrete example of such a struct
Consider a two-layered periodic structure consisting ofN
55 periods of fluorinated ethylene propylene~FEP! polymer
with n151.344, d153.88 mm, Young’s modulusE15380
N/mm2, and Poisson’s ratios150.48 alternating with a chal-
cogenide glass based on GaS3-La2S3 with n252.4, d2
52.17mm, andE2578.43103 N/mm2 @21#. The structure is
assumed to be surrounded by the same chalcogenide gl

The two curves in Fig. 2 represent the dependence of
reflection coefficient on the wavelengthl of the incident
radiation. The dashed curve characterizes reflection from
ideal structure corresponding to the formulaA5Al with Al
from Eq. ~25!. The solid curve characterizes the reflecti
from a real structure with random fluctuations in layer thic
ness, calculated at the first level of approximation, using
formula

A5Al1A(1) ~30!

with A(1) obtained from a numerical evaluation of formu
~29!. For the standard deviationsdr 1,2 of the normal distri-
bution we use 0.25% of the corresponding width of the id
layers. This figure is in accordance with the actual precis
of the procedure used for the preparation of thin films
polymers @21#. We can see that forl50.633 mm ~He-Ne
laser! the reflection coefficient almost equals 100%~no trans-
mission! for both ideal and real structures. Note that, acco
ing to the perturbation theory, we can use formula~30! only
if the numerical value ofA(1) obtained from Eq.~29! is less
than numerical value ofAl obtained from Eq.~25!, which is
true for the two-layered periodic structure above.
1-6
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If we apply an external compressive stressp to the bound-
aries of the structure only in the direction of the periodicityz
~such a deformation is called a simple compression!, the ho-
mogeneous decrease in the thickness of each basic lay
determined by@22#

dd1,25
p1,2

E1,2
d1,2, ~31!

wherep is the applied stress in thez direction.
In order to evaluate the variations in the refractive indic

dn1,2 under the applied stress, we use as a starting point
Lorentz-Lorenz equation, which relates the index of refr
tion n to the molecular polarizabilitya for isotropic and
cubic materials,

n221

n212
5

4p

3

NAr

M
a, ~32!

whereNA is Avogadro’s number,M is the molecular weight,
andNAr/M is the number of molecules per unit volume.
we assume that the polarizabilitya changes with changes i
the density of materialr as da/a5L0dr/r @23#, by
straightforward differentiation of the expression~32! we ob-
tain the relation

dn

dr
5

~n221!~n212!

6nr
~12L0!, ~33!

whereL0 is the phenomenological strain polarizability co
stant. If, for example,L0 is equal to zero, the changes in th
refractive indexn are produced only by changes in the de
sity of the materialr. In most cases, however,L0 is not zero.
For the typical polymer, such as polysterene,L050.460.1
@24#.

FIG. 2. Dependence ofR on l0 for N55, n052.4, n1

51.344, n252.4, d153.88 mm, d252.17 mm; dashed line, idea
structure~no fluctuations in layer thicknesses!; solid line, real struc-
ture ~dispersion of fluctuations in layer thicknesses is 0.25%!.
05660
r is

s
he
-

-

For our case of a simple compression, we can express
relative changes in densities of our materials asdr1,2/r1,2
5p(122s1,2)/E1,2. As a result, the variations in the value
of the refractive indexes can be written in the form

dn1,25
~n1,2

2 21!~n1,2
2 12!

6n1,2

p~122s1,2!

E1,2
~12L0!. ~34!

For the relatively small stressp59 N/mm2, which is far
enough from the compressive yield point~lower limit of
plastic deformation! of FEP ~15 N/mm2), we can obviously
neglect the variations in the parameters of the glassn2 and
d2 because of its high value of Young’s modulusE2 in com-
parison with the Young’s modulusE1 for the FEP. As for
variations in the parameters of the FEP layers, using E
~34! and~31!, we obtaindn150.002 anddd150.09mm. The
results are summarized in Fig. 3. The dashed line again
resents the reflective coefficient dependence for an id
compressed structure, i.e., for a structure with refraction
dexes of the basic layersn11dn1 ,n2 and the widths of the
basic layersd11dd1 ,d2. The solid line represents the firs
order approximation to the reflection coefficient depende
for the real compressed structure, i.e., for the structure w
the width of the basic layersd11dd11dd1m , d21dd2m .
We can see now that forl50.633mm R for both structures
is less than 10%, i.e., we have almost full transmission.

Therefore, the reflection and transmission coefficients
not critically sensitive to fluctuations of 0.25% in the thic
nesses of the basic layers of a two-layered periodic dielec
structure with a small number of periods (N55). As a result,
a two-layered periodic dielectric structure with such para

FIG. 3. Dependence ofR on l0 for N55, n052.4, n1

51.346,n252.4, d153.79mm, d252.17mm ~the previous struc-
ture under applied stressp59 N/mm2); dashed line, ideal structure
~no fluctuations in layer thicknesses!; solid line, real structure~dis-
persion of fluctuations in layer thicknesses is 0.25%!.
1-7
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eters seems suitable for the construction of optical switch
devices based on the effect of a decrease of layer thickne
under applied stress.

V. CONCLUSION

We have applied Green’s function theory to the probl
of the propagation of electromagnetic waves through a t
layered periodic dielectric structure with random Gauss
fluctuations in the thicknesses of the basic layers. The m
idea of the method is to build an exact analytical Gree
function for a two-layered periodic structure using its sy
metry properties. Then, with the aid of the Lippman
Schwinger equation, we found the first-order correction
the reflection coefficient of an ideal structure due to fluct
tions in layer thicknesses. We have shown that for an e
tromagnetic wave whose wavelength is several times the
riod of the structure~this ratio corresponds, for example,
the optical range of waves and a structure with the size
basic layers of 2–5mm! fluctuations in layer thicknesses o
e

.

ev

As

r,

05660
g
ses

-
n
in
s
-

o
-
c-
e-

f

the order 0.25% do not significantly change the reflect
and transmission coefficients for either unstressed or stre
structures if the number of periods does not exceedN56. As
a result, an optical switching technique based on the effec
the compression of a two-layered periodic structure with
relatively small number of periods and with high optic
modulation, i.e., consisting of materials having a large d
ference in refractive indices, is feasible despite the influe
of unavoidable fluctuations in layer thicknesses.

The analysis presented here is just one example of a w
range of problems that can be solved once the Green’s fu
tion for the basic periodic structure is known in analytic
form. Other applications will be discussed in future public
tions.
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