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Green’s function analysis of electromagnetic waves in two-layered periodic structures
with fluctuations in thickness
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A general method for the construction of the Green'’s function for finite one-dimensional inhomogeneous
layers is developed. Using the results of this method the exact analytical Green'’s function for periodic dielec-
tric structures is found. As an example of its application, the influence of fluctuations of the widths of the basic
layers on the reflection and transmission of electromagnetic waves propagating through the structure is inves-
tigated. The results are applied to the design of optical switching systems with periodic dielectric structures as
the operating medium. The same Green’s function can be used to solve a wide variety of other problems.
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[. INTRODUCTION perturbed profile of the refractive index, which in our case is

an ideal two-layered periodic structure. Then, using the

In a previous articld1] we considered in detail the nor- Green’s function, it is possible to reduce the perturbed prob-
mal propagation of plane electromagnetic waves througtem to the integral Lippmann-Schwinger equation and to find
two-layered periodic dielectric structures. We found thatits solution, at least in the first and second approximations, in

even relatively small variations in the parameters of thelerms of the Neuman(Born) series.

structure could cause large changes in the reflection and [N the present paper, we develop a general method for the
transmission. As an example, we demonstrated the influen@®nstruction of an analytical Green’s function for the waves
of a constant elastic stress created inside the structure on tREOPagating normal to the surface of a finite one-dimensional

reflection coefficient. We showed that in some regions of the?lUCture with an arbitrary profile of refractive index, sur-

structure parameters, particularly near the boundaries bégunded by a homogeneous medium with refractive index

tween so-called forbidden and allowed regions of wave frello- Using the Green’s function obtained, we transform the

guencies, a reasonably small stress is capable of shifting differential - wave equation to the integral Lippmann-

lect i ith | f forbidd chwinger equation, taking into account outgoing scattered-
electromagnetic wave with wave engihirom a forbidden wave boundary conditions. As an application of the theory
region, where reflection is close to 100%, to the edge of th

, = %eveloped, we consider the propagation of waves in two-
allowed region, where reflection is not more than 15% t05yered periodic dielectric structures with fluctuations in the
20%. Such shifts are caused primarily by homogeneoug,yer thickness. In particular, we obtain the exact analytical
changes, i.e., changes that keep the periodicity of the strugsreen’s function for the ideal structur@o fluctuations
ture, with the width of the basic layers changing frdmd,  Then, following the standard procedure of solving the
to d,+ 6d,,d,+ d,, with 6d; and dd, being around 1.5% Lippmann-Schwinger equation in terms of Neumann series,
for materials like polystyrene. The aforementioned shiftingwe obtain the first-order correction to the reflection coeffi-
opens the possibility of using a two-layered periodic dielec-cient for the ideal structure. After that, we define the limits of
tric structure as the operating medium for optical devices likeour fluctuations under which the Neumann series remains
modulators and switches. However, there may be practicaionvergent and identify the regions of structure parameters
difficulties in achieving this purpose due to random fluctua-where the reflection coefficient is not critically sensitive to
tions in any real structure. For us the most important issue othe fluctuations, i.e. keeps the essential features of the ideal
this “nonideality” is random fluctuations in thickness of the structure. Finally, combining the results of the analysis con-
layers due to inhomogeneous growing conditions. As a reeerning the tolerance in fluctuations with our previous results
sult, the real reflection and transmission coefficients couldtoncerning shifts of the electromagnetic wave from forbid-
have features that differ considerably from those for idealden to allowed regions under elastic stress acfiblp we
structures. Despite intense theoretical and experimental irsuggest theoretical guidelines for the construction of optical
vestigation of layered periodic structures in recent yearswitching systems with a two-layered periodic dielectric
[2-8], including nonlinear casd9,10], the influence of pos- structure as an operating principle.
sible defects on the properties of reflection and transmission The paper is organized as follows. In Sec. Il we develop a
coefficients of these structures are much less well known; segeneral method for the construction of an exact analytical
Refs[11,12, which are mainly devoted to the description of form of the Green’s function for one-dimensional systems
new pseudogaps of localized states created by positional digvith symmetrical refractive indexes at large distances and
order. Therefore, a theory that is able to take into account thehow how to make practical use of this function for the cal-
effect of such defectéfluctuations in layer thickness in our culation of the reflection coefficients. In Sec. Il we apply the
case on the reflection and transmission is needed. results to the calculation of the reflection coefficient of a
The most general and perhaps the most elegant approatho-layered periodic structure with fluctuations in the layer
to such problems is to find the Green'’s function for the un-thicknesses. In Sec. IV we identify the structure parameters,
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including the limits of fluctuations in them that are tolerable wherek is the wave number in vacuum.
for optical switching systems. Finally, the conclusions are The Green’s functionG(z,z;) for Eq. (2) satisfies the
summarized in Sec. V. equation

Il. GENERAL THEORY

Let us consider a transparentithout absorptiondielec- d°G(z,z1)
tric structure of length. with a position-dependent refractive d2
indexn, (z), and with a constant index of refractiog of the
medium on either side of the structure. Mathematically, the
refractive indexn,,(z) of such a profile can be represented inand the radiation condition
the form

+k?np(2)2G(2,2) = 8(z—7) (3)

o, 7<07>L G(£®,zq)~exp £ikngz) 4

nL(Z), O0<z<L.

@

Nn(2)=
for the waves that fall on the structure from the region
) . <0. The general method of obtaining the solution for the
Let electromagnetlc waves propagate along ztmarectl_on, Green’s functionG(z,z,) involves its spectral decomposi-
corres.pondmg to normal propagation. In this case, l'ght_ POtion in terms of the normalized solutions of the homogeneous
larization doe.s not play a ro'le and the calc';ula'tlons g'Verbquation(Z) (see, for example, Ref13]). But the calcula-
below are Val'd for both pOSS'b'?’ wave pqlarlzatlciaizong . tions in an exact analytical form appear lengthy and cumber-
t_hey or x axis). For monochromatic waves, i.e., fpr harmonic some even for simple cases where the prafiléz) is either
time dependence, we can QE(Z,I)IE(Z)G).(D(—Ia.)'[), and a step[14] or quadratic functiori15].
reduce the Maxwell equations to the one-dimensional homo- The first basic idea of the proposed method for the con-
geneous Helmholtz equation struction of an analytical Green’s function associated with
Eqg. (2) is to use the symmetry proper(z,z;) =G(z,,2).
42E We divide the whole planez(z,) into 12 parts, symmetrical
(2) +K2n,(2)%E(2) =0, (2)  in pairs with respect to the ling=z,, and introduce the
dz following notation forG(z,z,) in each of these parts:

(Gi(z,21) ifzxy>L, 2<0
Go(z,z1) HH0<z <L, 2<0
Gs(z,21) fz<zy<L, 2<0
Gi(z,21) iz <z, 2<0
Gs(z,z1) ifzy>L 0<z2<L
Ge(z,z1) fz<z;<L, 0<z<lL

G(z,2) = ®)

Gr(z,z1) f0<z1<2z, 0<z<L
Gs(z,z1) ifz1<0, 0<z<L
Go(z,21) ifzy >z 2>1L
Giolz,21) fz1<2z, 2>1L
Gulz,z) f0<z <L, 2>1L

| Gia(z,21) ifz; <0, z>1L
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The symmetry properties of the Green’s function require a exp(ikngz) + A exp(—ikngz), z<O0

knowledge of the solution only in the upper half plazez()

wherez,;>z. We can obtain the solution in the lower half

plane using the symmetry equaliti€;(z,z;) = G1x(2;,2),
Ga(2,21)=Gg(21,2),  G3(2,21)=Cy(21.2), GCs(z,2y)
=G11(21,2), Ge(2,21)=G7(21,2), and  Go(z,25)
=G10(21,2).

E/(z)=1{ CiEr (2)+DE(2), 0<z<L (7)
B, exdikng(z—L)], z>L

and

Now let us derive the exact expressions for the Green'g ()
function in the upper half plane. First, we note that since

n(z) varies only along thez axis the Green’s function
G(z,z;) can be factorized into independent functionszof
andz;. Then, using the boundary conditions on the internal

B, exp(—ikngz), z<O
- CrEhl(z)JrDrEhz(z), 0<z<L

boundaries of the upper half plane and the boundary condi- exd —ikng(z—L)]+A, exdikng(z—L)], z>L.

tions along the linz=2z,, we can show that the exact ana-

lytical expressions for the functio@(z,z,) in the upper half
plane can be cast in the form

1 ) :
Gi(z,27)= m& exgikng(z—L)]exp(—ikngyz),

1 .
Ga(2.21) = g - [CER, (22) + DI B (20) Jexp( ~ikno2),

1 : :
Gi(z,29)= m[exmknozl) + A exp(—ikngz;)]

X exp( —iknyz), (6)

1
Gs(2.21) = gy -exlikno(z:~ L)JIC/Ef, (2)+ D Er(2)],

Ge(2.24)= [CiER,(z1) + DiEp(21)]

1
2ikngB,
X[C/Ep (2)+DEp (2],

1
Go(2,21)= mexr{ikno(zl— L) {exd —ikng(z—L)]

+A, exdikng(z—L)]}.

In the above expressior, andEj, are the linearly inde-
pendent solutions to the homogeneous equat®nin the

region 0<z<L, which must be known in order to make
practical use of the Green’s function. All constants are di-

rectly related to the scattering solutioB(z) and E,(z) of
the homogeneous equatid®) for a plane wave falling on
the structure from the regiors<0 andz>L, respectively
(see Ref[16)),

)

They can be found from the continuity conditions if the fun-
damental solution€}, and Ej; are known. The boundary
conditions require thaf’ =A, andB,=B, for any E,';1 and
Ehz [17].

Suppose we have found the fundamental squtiEhls
and Ehz by some means, either analytically or numerically.

Now let us consider the same dielectric structure but with an
embedded defect of refractive index.(z) and with finite
width o=2"—2" between G<z<L. The one-dimensional
Helmholtz equation(2) for such a refractive index profile
n(z) can be represented in the form of the inhomogeneous
equation

d’E(z)

+k?n2(2)E(z)

0, z<z',z>7"

9

T —Kn2-ni(2)]E(2), z'<z<Z"

with the corresponding homogeneous equation and its solu-
tion Ey(z) describing wave propagation through the structure
without the defect(1). One can see that for the wave
exp(kngz) incoming from the regioz<<0 E(z) =E,(z) with
E|(2) from Eq.(7). The solutionE(z) of the inhomogeneous
equation(9) itself also has the form of expressid) but
with a different fundamental system of solutioﬁé(z),
Eg(z) inside the structure and with different constants,
which we denote by, B, C, andD.

Introducing the parameter(z) = —k?[n2(z) —n3(2)], let
us change the inhomogeneous differential equa®no the
equivalent integral Lippmann-Schwinger equati¢t3],
which in the regiorz<0 has the form

exp(ikngz) + A exp( —ikngz)

=exp(ikngz) + A, exp(—ikngz)

+ sz,”G(Z,Zl)M(Zl)EL(zl)dzl_ (10)

056601-3



GREGORY V. MOROZOV, ROMAN GR. MAEV, AND G. W. F. DRAKE PHYSICAL REVIEW B3 056601

n(z) wherem=1,2,... N is the number of the current period
o i (see Fig. 1
— : In order to describe the random fluctuations, we will use a
o) o : T : :
: ' 1Om c® | normal distribution model with mean 0 and standard devia-
g n : | it tion or4 for the fluctuations in the width of the layers with
. . ; n(z)=n4, and standard deviatioér , for the fluctuations in
' : ; z the width of the layers witim(z) =n,. As a result, the actual

0 4 d L='Nd widths of the layers with the refractive indexesandn, of

an arbitrary periodm are d;+ 6d;, and d,+ 5d,,,, where
é6dqy, and éd,,, are either positive or negative random num-
bers from the above normal distributions, as shown in Fig. 1.
Therefore, it is convenient to introduce two groups of em-
bedded defects inside the structure. The first group consists

This integral equation cannot be used directly to find theOf N defects with thickness, boundary points, and refractive

reflection coefficientA because under the integral we have"dex Of the defect in thenth period determined by the for-
the unknown functiorE"(z,) = CE}(z,) + DE5(z;), which mulas

is a solution of Eq(9) in the region B<z<L. However, it is m m—1

possible to develop an approximation scheme known as the U%):E 8dy;+ > 8dy;

Neumann series. The core idea of the scheme for our prob- =1 j=1

lem is to use the homogeneous solut®j(z,) = CEj; (2;)

+D,Eh2(zl) as an initial approximation for the inhomoge-

neous solutiorE(")(z;) under the integral, and then iterate to Z":ZET})JF GST}),
find higher order corrections. As a result, we can express the
reflection coefficieniA in terms of the Neumann series

FIG. 1. Two-layered periodic dielectric structure with fluctua-
tions in layer thicknesses: dashed line, ideal structocefluctua-
tions in layer thicknessgssolid line, real structuréfluctuations in
layer thicknesses with Gaussian distribujion

z'=z2V=(m-1)d+d;, (15)

n, if o{V>0
n, if o{M<0.

A=A|+A(1)+A(2)+-~-+A(J)+~'-, 11

As a result, the perturbation potentja(z) of the defect of

where the first term of the seridg is simply the amplitude i group in themth period takes the form

reflection coefficient for the structur@) (no defecty the

2 2 ; 1
second term 0 —kK3(n2-n3) if oM>0
—k¥(n3—n?) if oV<o0.

Mm (16)

A= fZ”G 0, C/E- (21)+D\EL (z1)]d
7z’ (02)u(z)[C hl(zl) ! h2(zl)] & The second group consists Nf—1 defects with thickness,

(12 boundary points, and refraction index of the defect on the

boundary between theath andm+ 1th periods determining
is the first-order correction to the reflection coefficient, andby the formulas
an arbitrary term is given by

m m
oy (y 0'%12):]21 5dlj+;l 8dy;
AW = f, e f ,G(0.z) u(z) - - - G(22,21) u(z4)

z z

r=72)=
z'=z;’=md, 1
X[CEp, (z1) + D Ey (21)]dzd2- - -dz. (13) m a7

— 2 2
2'=22+ o,

Ill. APPLICATION TO TWO-LAYERED PERIODIC

()
STRUCTURES Ny if oR’>0

In this section we apply the general solution to a finite ny if op’<0

two-layered periodic dielectric structure with random fluc- g 5 resyit, the perturbation potentja(z) for each defect of
tuations in the width of the layers due, for example, to 'nho'this group takes the form

mogeneous growing conditions. Let the number of periods

beN and the thicknesses of the ideal layersiped,, i.e., for —k%(n3—n?) if o@>0
the ideal structuré. =Nd, whered=d,+d, is the period of anz)Z[ 22 2w (2) (18
the structure, and the refractive index is —k%(n1—n3) if o’<O0.
n(2)= Ny, (M—1yd<z<md, (14) Now let us find the amplitude reflection coefficieftof
L n,, md;<z<md, this structure for the case of a plane wave é«pf) incom-
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ing from the regionz<0. For the ideal periodic profile the and in the layers wittn(z)=n, as
homogeneous equatid8) in the interval 0<z<L is the Hill

equation, and, according to the Floquet theorem, the solu- ny . n,
tions Ehl(z) and Ehz(z) can be represented BES] Ehl(z): 5( 1+ N,

sifkny(z—md)— $kn,d; + ¢Jle'é™

Ep (2)=Fi(2)expiéz), Ep,(2)=Fa(2)exp—ié2),

n A
(19 —%(l—n—i)sir[knz(z—md)nt%kn1d1—¢]e'§m,

whereF 1(z) andF,(z) are periodic functions of with the (21)
periodd, and¢ is a characteristic Lyapunov constant. In the

sriecn‘lc case of. the .two layered p.erlod|C|tEhl(z) and EEZ(Z)Z% 140 sirfkny(z—md) — tknyd, — p]e—iém
Ehz(z) can be written in the layers with(z) =n; as[1,19 2 ny
. R ng\ )
E,\(2) =sinfkny[z— (m—1)d] - zkn,d; + p}e' &MY, -3l1- n—i simkny(z—md)+ kn,d, + pJe €™,
(20)
o —ig(m— The complex phase¢ and so-called multiplicatorp
N5 = —(m-— _1 _ i§(m-1)
Ep,(2) sinfkny[z=(m=1)d]=zkn,d, ~ ¢}e ’ :=exp(¢) can be expressed as

L, a lsinQ+asinA -
P A0S SNk, dy) | (22
cogQ)—a?cogA)—sgrfasin(kn,d,)]V[cosQ —a?cosA]?— (1—a?)?
p= > , (23
l1-a
where

Np—nNy
a= , Q=k(n2d2+n1d1), A=k(n2d2—n1d1). (24)

N,+ny

Using the boundary conditions at the poiats0 andz=Nd, we can define either analytically or numerically all consta#qgts
B/, C,, D, A, B,, C,, andD, of the scattering solution&) and(8). For example, the constaAt, which is the amplitude
reflection coefficient of the ideal structure for the wave #&mpg) incoming from the regiorz<0, has the analytical form

[(n2—n3)cog2¢)+ (n2+n3)cogkn,d;) +i2n,ng sin(kn;d;)]sin(éN)

= : : : (29
" 2n.ngsin(2¢)cos éN) — [ (n?—nd)cos knydy) + (n+nZ)cos 2¢) Isin(éN)
|
As a result, a knowledge of all these constants allows us to N—1 L2, (2
find the Green’s functiorG(z,z;) for the finite ideal two- + > ,U«ET?)J’(; ™ dz,
layered periodic structure in all 12 part5) of the plane m=1 m
(2.21). .- _ . Gel(02)Ep}(z) i of>0
Finally, the net contribution of the fluctuations to the first- . . (26)
order correction terni12) for the reflection coefficient can Gg2(02))Epi(zy) if ol3)<0,

be written as
where

1
G21'2(0,21) = M[C' Eﬂjz(zl) +D; Eﬂi’z(zl)] 27

N

1), @

A= LD Z(fln) mdz, and
m=1 Zn

Ept21) = CiEA(2z0) +DIEM(2a). (28)

Using Egs.(27) and (28), we can expresé&") in the more

[ng(o,zl)EEZ(zl) it o¥>0
explicit form

Gei(021)Ept(zy) if of)<0
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" % M%) NEO TG [QEEi(ZQ-‘rD,EEz(Zl)]Z if (Tgnl)>0
A= - f moMdz X
i1 2ikno )i T [CENz) +DIEN (DT if ofP<0

N_

n n 2 .
L@ fZ(Z)M(Z) [CIEp(z) +DIE(z)] if o3>0

_ m m dz >< 29
=1 21Kno J oD " [CER@) D ER@T it o<, 29

All four kinds of integral in the above expression can beber of layers, the smaller the number of terms in the §2®h
evaluated analytically without any difficulties, since the over random fluctuations in the calculation of corrections to
functions under the integral are simply superposition of thehe reflection coefficient. As for the second requirement, the
sinusoidal function$20) and(21). However, the final answer most suitable material is a range of polymers with high op-
is very cumbersome and we do not present it here in detaitical transparency. Note that almost all optically transparent
Instead, in the next section, we consider the numerical applipolymers have refractive indices in the range 1.33 to 1.50.
cation of Eg.(29) to two-layered periodic dielectric struc- Consequently, we cannot construct the operating medium
tures with the specific parameters suitable for the construdrom alternating layers of two polymers if we want to keep
tion of optical switching systems. It should be noted that wethe number of layers small and still have a well defined
can obtain any other correction ter&d?) by applying for-  structure of allowed and forbidden regions for the reflection
mula (13). coefficient. We are therefore forced to choose the second
material to be a glass with high refractive index 2. Such
two-layered periodic structures consisting of alternating
IV. RESULTS AND DISCUSSION polymer/glass layers with a large difference in refractive in-
As mentioned in the Introduction, the main idea for adices have recently attracted considerable interest for other

proposed optical switch is to vary the material parameters opossible applicationf20].
the two-layered periodic dielectric medium so as to change L€t us consider a concrete example of such a structure.
significantly (up to 80% the reflection coefficient for inci- Consider a two-layered periodic structure consistingNof
dent electromagnetic waves with a specific wavelengtly ~ = 9 Pperiods of fluorinated ethylene propyleER polymer
the application of an elastic stress of reasonable size. Theith n;=1.344,d;=3.88 um, Young's modulusE; =380
proposal differs from existing acousto-optic filters andN/mn?, and Poisson’s ratio-;=0.48 alternating with a chal-
switches in that it is the thicknesses of the basic laygrs cogenide glass based on GalS,S; with n,=2.4, d,
andd, that are changed, rather than their indices of refrac=2.17 um, andE,="78.4x 10* N/mn¥* [21]. The structure is
tion n, andn,. assumed to be surrounded by the same chalcogenide glass.
Several requirements must be met in the choice of mate- The two curves in Fig. 2 represent the dependence of the
rials for the practical realization of such a switch. First, thereflection coefficient on the wavelength of the incident
reflection coefficienias a function of\) must have a well radiation. The dashed curve characterizes reflection from an
defined structure of forbidden regions, where the reflectiondeal structure corresponding to the formulss A; with A,
coefficient almost reaches unity, and allowed regions, wherfom Eq. (25). The solid curve characterizes the reflection
the reflection coefficient drops to nearly zero. Second, thérom a real structure with random fluctuations in layer thick-
medium should be constructed from alternating layers of mabess, calculated at the first level of approximation, using the
terials with low Young’s modulus in one layer and high formula
compressive yield strength in both in order to produce a
differential change in the thicknesség andd, of the basic A=A + A (30)
. L |
layers. Third, the parameters should be chosen to minimize
the influence of unavoidable random fluctuatiafd ,, and
8d, on the performance characteristics of the switch due tovith A() obtained from a numerical evaluation of formula
imperfect growing conditions. The Green’s function obtained(29). For the standard deviation® ; , of the normal distri-
here is particularly useful in studying the influence of ran-bution we use 0.25% of the corresponding width of the ideal
dom fluctuations in order to satisfy this last requirement. layers. This figure is in accordance with the actual precision
There are two ways to satisfy the first requirement. A wellof the procedure used for the preparation of thin films of
defined structure of allowed and forbidden regions can bgolymers[21]. We can see that fox =0.633 um (He-Ne
obtained either by using a rather large numbkeof layers lase) the reflection coefficient almost equals 10086 trans-
consisting of alternating materials with close indices of re-mission for both ideal and real structures. Note that, accord-
fraction [1,19], or by using a small number of layers, but ing to the perturbation theory, we can use form{#8) only
with materials having large differences in refractive index.if the numerical value oA(*) obtained from Eq(29) is less
The second option is preferable because it simultaneouslhan numerical value of, obtained from Eq(25), which is
helps to satisfy the third requirement—the smaller the numtrue for the two-layered periodic structure above.
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1.0
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FIG. 2. Dependence oR on Ay for N=5, ny,=2.4, n; 0.630 0635 0640 0645 0650 0655
:1344, n2:2.4, d1:388 /,Lm, d2:217 ,um, dashed "ne, ideal FIG. 3. Dependence oR on )\O for N:5, n0:2_4’ nl
structure(no fluctuations in layer thicknesgesolid line, real struc-  _— 1.346,n,=2.4, d,=3.79 um, d,=2.17 um (the previous struc-
ture (dispersion of fluctuations in layer thicknesses is 0.25% ture under applied stregs=9 N/mn?); dashed line, ideal structure

(no fluctuations in layer thicknesgesolid line, real structurédis-
If we apply an external compressive streds the bound-  persion of fluctuations in layer thicknesses is 0.25%
aries of the structure only in the direction of the periodiaity
(such a deformation is called a simple compreskithe ho-
mogeneous decrease in the thickness of each basic layer 'ﬁ
determined byf22] re

For our case of a simple compression, we can express the
ative changes in densities of our materialsdas »/p; »

=p(1-20,9/E;,. As a result, the variations in the values
P1s of the refractive indexes can be written in the form

5d1,2:§2d1,2: (31)

(ni,z_ 1)(”%2"‘ 2) p(1—201,)
6N, Eio

wherep is the applied stress in thedirection. SNy o=
In order to evaluate the variations in the refractive indices '

ény , under the applied stress, we use as a starting point the

Lorentz-Lorenz equation, which relates the index of refrac- . e relatively small stregs=9 N/mn?, which is far

tion. n to thg molecular polarizabilityr for isotropic and enough from the compressive yield poifiower limit of
cubic materials, plastic deformationof FEP (15 N/mn?), we can obviously
5 neglect the variations in the parameters of the gigsand
n"-1 _ 4_77 wa (32) d, because of its high value of Young’s moduldgin com-
n+2 3 M parison with the Young’s modulug, for the FEP. As for
variations in the parameters of the FEP layers, using Egs.
whereN, is Avogadro’s numbenM is the molecular weight,  (34) and(31), we obtainsn,;=0.002 andsd,;=0.09.m. The
andNpp/M is the number of molecules per unit volume. If results are summarized in Fig. 3. The dashed line again rep-
we assume that the polarizability changes with changes in resents the reflective coefficient dependence for an ideal
the density of materialp as Sala=AySp/p [23], by  compressed structure, i.e., for a structure with refraction in-
straightforward differentiation of the expressi@®2) we ob-  dexes of the basic layers, + én;,n, and the widths of the

(1-Ag). (34

tain the relation basic layersd,+ éd;,d,. The solid line represents the first-
order approximation to the reflection coefficient dependence
sn (n*-1)(n*+2) 1—A 33 for the real compressed structure, i.e., for the structure with
- enp (1A 33 the width of the basic layerd+dd;+ odsy, dp+ .

We can see now that for=0.633 um R for both structures
where A is the phenomenological strain polarizability con- is less than 10%, i.e., we have almost full transmission.
stant. If, for example) is equal to zero, the changes in the  Therefore, the reflection and transmission coefficients are
refractive indexn are produced only by changes in the den-not critically sensitive to fluctuations of 0.25% in the thick-
sity of the materiap. In most cases, howevek, is not zero.  nesses of the basic layers of a two-layered periodic dielectric
For the typical polymer, such as polystereng,=0.4+-0.1  structure with a small number of periodS€5). As a result,
[24]. a two-layered periodic dielectric structure with such param-
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eters seems suitable for the construction of optical switchinghe order 0.25% do not significantly change the reflection
devices based on the effect of a decrease of layer thicknessasd transmission coefficients for either unstressed or stressed

under applied stress. structures if the number of periods does not exdded. As
a result, an optical switching technique based on the effect of
V. CONCLUSION the compression of a two-layered periodic structure with a

. . relatively small number of periods and with high optical
We have applied Green’s function theory to the problempyqylation, i.e., consisting of materials having a large dif-
of the propagation of electromagnetic waves through a tWotgrence in refractive indices, is feasible despite the influence
layered periodic dielectric structure with random Gaussiarys ,navoidable fluctuations in layer thicknesses.
fluctuations in the thi.cknessefs of the basic Iaye_rs. The main The analysis presented here is just one example of a wide
idea of the method is to build an exact analytical Green'sange of problems that can be solved once the Green’s func-
function for a two-layered periodic structure using its Sym-jon for the basic periodic structure is known in analytical

metry properties. Then, with the aid of the Lippmann-form. Other applications will be discussed in future publica-
Schwinger equation, we found the first-order correction tg;ons.

the reflection coefficient of an ideal structure due to fluctua-

tions in layer thicknesses. We have shown that for an elec-
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riod of the structurdthis ratio corresponds, for example, to

the optical range of waves and a structure with the size of Research support by the Natural Sciences and Engineer-
basic layers of 2—um) fluctuations in layer thicknesses of ing Council of Canada is gratefully acknowledged.

[1] Gregory V. Morozov, Roman Gr. Maev, and G. W. F. Drake, [12] R. Pelster, V. Gasparian, and G. Nimtz, Phys. Re%5E7645

Phys. Rev. E60, 4860(1999. (1997.

[2] L. Brillouin, Wave Propagation in Periodic Structuré®over, [13] R. H. Landau,Quantum Mechanics |I2nd ed.(Wiley, New
New York, 1953. York, 1996, Chap. 5.

[3] A. Yariv and P. YehOptical Waves in CrystaléWiley, New  [14] M. A. M. de Aguiar, Phys. Rev. A8, 2567 (1993.
York, 1984, Sec. 1.5. [15] Y. L. Li, J. Acoust. Soc. Am96, 484 (1994).

[4] P. Yeh,Optical Waves in Layered Mediaviley, New York,  [16] M. G. E. da Luz, E. J. Heller, and Bin Kang Cheng, J. Phys. A
1988. 31, 2975(1998.

[5] S. Yu. Karpov and S. N. Stolyarov, Usp. Fiz. Nall3 63  [17] k. chadan and P. C. Sabatiénverse Problems in Quantum
(1993 [P?’Sl'( Usp36, 1 (199?]' d M. Scal Phvs. R Scattering TheorySpringer, New York, 1989
(6] ;lgMzilBoe;(lgg;on'J. P. Dowling, and M. Scalora, Phys. Rev. E[18] M. V. Fedoryuk, Ordinary Differential Equations(Nauka,
' ) . N Moscow, 1985.
7] EISE ;(sa:gp4h(itglgl?;)roderlck and C. Martijn de Sterke, Phys. Rev[lQ] G. V. Morozov, R. G. Maev, and G. W. F. Drake, Quantum
[8] J. P. Dowling, IEE Proc.: Optoelectrohi45, 420 (1998. E'ec_”‘;”'zg'l 977(1998. o(156
[9] G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. ASIZO] Y. Fink et al, Science282, 1679(1998.
[21] L. Sunet al, J. Appl. Phys75, 7482(1994).

santo, Opt. Lettl8, 13 (1993. o "
[10] M. Scalora, J. P. Dowling, C. M. Bowden, Mark J. Bloemer, [22] L. D. Landau and E. M. LifshitzTheory of Elasticity3rd ed.

and M. D. Tocci, US Patent No. 5 740 287998 (Pergamon Press, Oxford, 198¢p. 11-14.
[11] Alexander Figotin and Viadimir Gorentsveig, Phys. Ree®  [23] D. A. Pinnow, IEEE J. Quantum ElectroQE-6, 223(1970.
180 (1998. [24] I. Abdulhalim et al, J. Non-Cryst. Solid464, 1251(1993.

056601-8



